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ABSTRACT

The transmission and radiation of sound from submerged
plates are investigated by means of a quantitative
schlieren method which produces accurate visual representa-
tions of sound filelds. The method is shown to have signi-
ficant advantages over the usual time-consuming, point-by-
point scans of acoustic fields. Previous investigations
have shown the feasibility of quantizing schlieren data,
and this investigation demonstrates a dram;tic improvement
in the accuracy of that data, reducing the standard error
to wunder one decibel which places the accuracy of the
method on equal footing with other acoustic measurement
systems. The further addition of stroboscopic techniques
enabled the resolution of individual acoustic waves and
permitted the differentiation between standing waves and
progressive waves. The low frequency resolution of the
classical schlieren system was also improved by nearly two
orders of magnitude; sound waves as low as 27 kHz were
easily visualized. These improvements in the quantitative
schlieren system are demonstrated by a thorough study of
transmission of sound through submerged metal plates over a
frequency range extending from below to over one hundred
times the classical coincidence frequency. Recent theoret-
ical descriptions of the lowest order symmetrical Lamb wave

are confirmed, and cancellation of modal pairs of Lambd

waves with increasing frequency is observed.
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CHAPTER 1

BACKGROUND

1.1 Introduction

The interaction of sound with physical structures is a
topic of major concern in acoustics. Specific 1items of
interest are the diffraction of sound around edges and
through apertures, the transmission and reradiation of
sound by jointed and welded panels, and the radiation of
sound from plates and shells. Such phenomena are very
complex because of the generation of free and forced Lamb
and Rayleigh waves and their subsequent radiation into the
surrounding medium. A  Dbasic understanding of these
phenomena is necessary in order to more accurately predict
the acoustic qualities of auditoriums, the noise levels
transmitted between living areas, or the noise radiated by
machinery in the work environment. '

In previous work, the evaluation of such intricate
sound fields had to be based on much guesswork. In this
thesis, a stroboscopic illumination of the sound field by
periodically interrupting a laser beam has made it possible

to differentiate between standing and progressive waves,




and to measure their wave 1lengths with great accuracy.
Interpretation and analysis of the various phenomena that
appeared through use of this schlieren method was thus
possible.

In addition to demonstrating gﬁe power of the strobo-
scopic schlieren technique in the analysis of several
interesting, complex acoustic fields, much of the effort of
this dissertation was concentrated on the investigation of
the sound transmission of simple plates and the various
types of waves, longitudinal waves, forced vibrations,
transient waves, etc., that are associated with this
transmission. The mathematical treatment of sound radia-
tion by a vibrating plate and sound reflection from a plate
is quite similar and the results readily applicable to
either case. Although the literature in the last few years
reflects considerable interest in theoretical treatments of
the problem, very 1little experimental effort has been
expended. This investigation is intended to fill part of
that gap.

The experimental approach is based on the gchlieren
technique. This method has in the past been 1limited to
acoustic frequencies mnear 1 MHz and above. Since this
range is far above frequencies of normal, practical engi-
neering interest, an attempt was made to construct a
schlieren system which would be capable of 1imaging sound
fields of considerably lower frequencies. The result was

an instrument which was capable of producing clear, sharp

catat,

A s




images of acoustic waves at frequencies as low as 27 kHz,
or nearly two orders of magnitude below the frequency range
commonly used. Futhermore, it was found that, by combining
stroboscopic techniques with the schlieren method, numerous
additional measurements could be obtained on progressive
fields which were previously impossible.

A major obstacle to the use of a schlieren system in
such an investigation was the previous unreliability of
quantitative data obtained with the method. One of the
most striking achievements of this project was the demons-
tration of the extreme accuracy and repeatability of the
resulting data. In most cases, tolerances as close as 1 dB
were easily maintained. This, combined with the other
obvious advantages of the schlieren method, e.g., a full
two~dimensional representation of a sound field with no
inherent disturbance of the field by the measurement
process as opposed to the wusual point-by=-point probing
techniques should offer great encouragement for its future

use.

1.2 Objectives

The standard schlieren method reproduces sound inten-
sity as white and dark shades in the schlieren photographs,
but does not give any information about the ¢type of waves
that give rise to the sound field. An exact analysis of
these various waves has been one of the great difficulties

with previous schlieren investigations; thus, the major
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task of this research was the development of stroboscopic
and highly accurate procedures for analyzing complex sound
fields. The second basic objective of this research was to
obtain experimental confirmation of recent theoretical
treatments of the acoustic radiation and transmission
through submerged plates. Furthermore, it was intended
that previous experimental confirmations of the dispersion
relations would be extended to much higher frequency
parameters. Analysis of the latter produced some surpris-
ing results regarding the appearance of the cancellation of
modal pairs. Since the theoretical predictions apply to
ideal, infinite plates, a secondary objective was to obtain
experimental results showing the perturbations caused by
nonidealized plates, e.g., the effects of the plate edges
and of discontinuities such as ribs and weld joints. A
prerequisite to this was the improvment of accuracy and
low-frequency resolution of the quantitative schlieren
method as well as the addition and perfection of the
stroboscopic techniques necessary for the analysis of

progressive-wave fields.

1.3 Sound Interaction with Plates

1.3.1 Transmission at Oblique Angles

The plates to be discussed herein will be treated as

isotropic elastic material bounded by two infinite parallel

planes and submerged in an infinite fluid medium. The




original theoretical treatment of such infinite plates was
by Rayleigh [1] and Lamb {2, 3], the general results of
which are now referred to as the "classical plate” theory.
The latter paper {3] discussed the infinite set of propaga-
tion modes which are possible for waves traveling 1in the
plate at high frequencies. These modes are usually refer-
red to as either "free plate waves" or "“lLamb waves".
Earlier, Rayleigh [l] had predicted the existence of
"Rayleigh waves" at the surface of a semi-infinite solid
which, in the context of the present investigation, can be
thought of as an infinitely thick plate.

With the exception of Knott’s study [4] in 1899 on the
reflection of elastic waves, little was done concerning
sound interaction with plates until 1934, at which time
three groups began reporting on various series of relevant
investigations. One group headed by Lindsay [5, 6, 7]
first developed a theoretical description of sound trans-
mission through stratified 1layers of solids and £fluids.
Then, Smyth and Lindsay [8] tested the theory by means of
an experimental investigation of sound transmission through
arrays of multiple plates using a torsional disk to measure
the amplitude of the transmitted sound. A second group,
headed by Schaefer and Bergmann [9, 10, 11], developed a
method of measuring the velocities of the longitudinal and
shear waves in transparent solids by means of a 1light
diffraction technique. They also attempted to extend the

method to opaque materials by reflecting the light beam off




the surface of the solid (10]. The third group, headed ULy
Walti [12, 13}, developed a method of measuring elastic
constants by determining the sound velocities in the solids
from the character of the transmission data. They used
thin wedges of material and found the dispersion curve by
using the diffraction pattern produced by a beam of light
passing through the transmitted sound field.

A landmark experiment by Sanders [l14] in 1939 also
used an optical method to find the angular locations of the
peaks 1in the transmission curves (from which the sound
velocities can be determined) for btrass and nickel at
frequencies up to about six times the classical coincidence
frequencies of the plates. In the mid-nineteen forties,
Osborne and Hart [15, 16] showed the existence of a precur-
sor 1in the received signal caused by the higher sound
velocity in the plate; detonator caps were used to produce
a sharp acoustic ©pulse which was then reflected off a
large, submerged steel plate., At the same time, Reissner
[17, 18] was making substantial improvements in the theory
of plates with his attempts to include the effects of shear
deformations in the classical derivation.

With the development of electronic computers, Fire-
stone [19) was, in 1948, able to solve the transcendental
equations which describe the dependency of the phase
velocities of the various Lamb waves on frequency, 1.e.,
the dispersion curves. The comparison with experimental

data was good up to frequencies of the order of fifty times
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the classical coincidence frequency of the plate, which

included the first eight to nine Lamb modes. The same
year, Fay [20] predicted and his associate, Finney [21],
measured backscatter (i.e., acoustic energy radiated back
towards the sound source along the angle of incidence) from
submetged steel plates for frequencies up to thirteen times
the coincidence frequency of the plate. This same labora-
tory then took the next step beyond simply attempting to
determine the angular locations of the peaks in the trans-
mission curve and produced [22] some of the first, and
still most detailed, experimental curves of sound transmis-
sion vs angle of 1incidence for steel ©plates in water.
Curves were presented for very <closely spaced frequency
intervals covering the range from 2.7 to 50 times the
classical coincidence frequency. At about the same time,
another group, Schneider and Burton {[23], produced several
plots of transmission vs angle for aluminum plates in water
scattered rather sparsely in the frequency vrange from
eighteen to seventy-one times the coincidence frequency;
this served as a validation of a method they then used to
determine the elastic constants of several resias. They
also succeeded in obtaining schlieren photographs of sound
transmission through aluminum plates at thirty=-five times
the coincidence frequency [24] but were unable to obtain
any quantitative data with the latter method and thus did
little more than provide a sequence of photographs and a
confirmation of the angular locations of the radiation from

a couple of the Lamdb waves.
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In 1950, Schoch [25] brought together all of the
previous work on sound interaction with plates in a super-
bly detailed tutorial paper. Immediately thereafter,
Mindlin [26] developed the theoretical description of plate
motion now named after him by successfully including the
effects of rotary inertia and shear in the description of
the flexural motion of plates. He and his co-workers (Kane
and Mindlin {27}, and Mindlin and Medick [28]) then
extended the theoretical description to include extensional
vibrations. The wvarious parts were brought together by
Mindlin [29] in 1960.

Experimental work began tapering off during this time
period. However, in 1952, Makinson [30] presented several
very detailed dispersion curves wusing the method developed
by B4r and Walti (12], but wmade no attempt to solve the
transcendental equations needed for a theoretical compari-
son as Firestone [19] had done for the case of aluminum
plates, In the late 1950’s, Liamshev and Rudakov [31, 22]
were able to obtain several angular plots for the sound
reflected from or radiated by various types of submerged
metal plates. This was accomplished by means of a quartz
transducer and barium titanate vibrators. Worlton [33]
calculated the dispersion curves for the first eighteen to
twenty Lamb modes in aluminum and in 2zirconium. He then
was able to experimentally determine several scattered
points which 1Iindicated reasonably good confirmation of

these curves for aluminum. There apparently have been very
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few attempts during the last twenty years to experimentally
confirm the dispersion curves in other substances or to
report detailed plots of transmission ratios at oblique
angles. )

The theoretical efforts have not slackened; in fact,

they seem to have gained momentum in the last few years.

In 1959, Tamm and Weis [34] gained some interesting insight

into the behavior of the dispersion curves at very high
frequencies by calculating a set of curves for an extremely
high Poisson’s ratio of 0.49 (the theoretical maximum 1is
0.50). In 1966, Feit [35, 36) was able to calculate the
far-field radiation pattern of a vibrating plate based on
the Mindlin plate equations. Then, in 1975, Stepanishen
[37] investigated the effects of shear and rotary inertia
on, specifically, the transmission of sound through plates
(also note the resulting comments by Young [38] and Stepan-
ishen’s subsequent reply [39]). Stuart [40, 41] then
analyzed the effects of fluid loading on the radiated field
by using a technique based on leaky wave poles. One result
of this work is the possible indication of additional real
roots {in limited cases dependent on the occurrence of
certain combinations of parameters. The corresponding
physical explanation for this possibility has given rise in
this past year to several other papers with Crighton [42] ‘,
and particularly, Strawderman et al. [43], 1insisting that |
the additional real roots have no physical basis, but with

Pierucci and Graham [44] of fering support for their
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existence. Most recently, the Mindlin plate theory has
been applied to the problem of composite plates by Rudgers
[45], and to the problem of acoustic backscattering from
plates by Rumerman [46].

The following treatises should be consulted for more
detailed summaries of the previous work on the radiation
and reflection of sound waves from plates: Ewing et al.
{47]), Brekhovskikh [48], Viktorov [49], Junger and Feit

[50], and Graff [51].

1.3.,2 Effects of Bounded Beams

GBtz [52] was able to obtain, in 1943, several trans-
mission curves as a function of angle by scanning the
transmitted acoustic field with a hydrophone. Furthermore,
when scanning near to, and parallel to, the back surface of
the plate, he found a pronounced lateral shift in the
location of the transmitted beam when the angle of inci-
dence was near one of the <critical angles of the Lamb
modes. Schoch [53] succeeded in explaining the phenomenon
so convincingly that it was not until twenty years later
that Neubauer [54] was able to obtain experimental data of
sufficient range and accuracy to turn up discrepancies in
Schoch’s theory. Neubauer’s work prompted Bertoni and
Tamir [55] to 1improve on Schoch’s treatment by basing the
predictions of the magnitude of the beam displacement on
the intensity across the width of the beam as well as its

trequency. Additional experimental evidence was obtained
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by Plona [56, 57] and some additional theoretical work was
done by Pitts [58, 59, 60]) while both were at Georgetown
University.

First, Tolstoy and Usdin [61] in 1957 and then Vikto-
rov [49] 1in 1967 discussed the possibility of the phase
velocity and the group velocity having opposite signs
within certain very narrow frequency ranges. The lowest
frequency at which this might occur is at the onset of the

second symmetrical plate mode, i.e., the S, Lamb wave. The

1
first hint of an experimental confirmation of this rather
surprising prediction was presented by Negishi [62] 1in a

paper presented at a recent joint meeting of the Acoustical

Society of America and the Acoustical Society of Japan.




CHAPTER 2

THEORETICAL FOUNDATIONS

2.1 Scale Models

The building and testing of scale models before the
construction of a full-size prototype is a common practice
in many branches of engineering. 1In fact, in such cases as
the testing of aircraft designs in wind tunnels or the
testing of harbor and estuary scale models are wused
universally. The principal motivation for such model
studies 1is the economics involved in investigating the
effects of changes 1in various parameters in the design of
the full-size prototypes for structures which are too
complex to be treated analytically. The relationships used
to predict the ©behavior of the prototype from the results
of the model studies are based on the principles of dimen-
sional analysis. These were first drawn together in 1915
by Lord Rayleigh [63], although some of the main concepts
had been used previous to that time by Rayleigh and others.

Dimensional analysis is used with such frequency as to
be nearly second nature to most engineers and physicists.

Consequently, the degree of physical intuition needed to

g
|
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properly choose the various physical parameters which need
to be included in the dimensional equation or which need to
be scaled and those which can simply be ignored, is gener-
ally overlooked. Bridgman [64], for example, discusses the
problem of deducing the time of oscillation of a small drop
of liquid. After arguing for the inclusion or exclusion of
various parameters such as surface tension, density,
radius, viscosity, etc., he concludes that: "The untutored
savage in the bushes would probably not be able to apply
the methods of dimensional analysis to this problem and
obtain results which would satisfy us." This reliance on
physical 1intuition can complicate the defense of one’s
final choice of parameters to be included in the scaling
equations.

The common practice with acoustical scale modeling in
general and in schlieren systems specifically is to scale
each of the three 1linear dimensions down by the same
factor, build the model of the same materjal as the full-
size prototype, and submerge it in the same acoustic
medium. This implies that such crucial parameters as sound
velocity, density, elastic moduli, etc., will not be scaled
down in parallel with the geometric size. The problem is
then to either defend this technique or to find exactly
what effect this distortion will have on the results of the
model investigation,

Beginning with a4 simple point mass compliance system

the equation of motion 1is




14
ME + RE + £/K = F, (1)

where M is the mass, R the resistance, K the compli~-
ance, F the driving force, and £ the displacement. This

can also be written as

E+ 2 8¢ + wozg = F/M, (2)
where
§ = R/gM is the damping (3)
and
w, = 1/ VMK the natural frequency. (4)

If the system is scaled by changing the geometrical dimen-
sions by a factor a, i.e., L + alL, then each term in the
equation of motion must scale in a similar manner if the
equation is to hold for all sizes of models. The steady-
state response of the system can be found with no loss of

generality by assuming a forcing function of the form

F = f exp(jut). (5)
Equation (2) reduces to

[1- 256 /w = w?/w?) = £/(-uPm). (6)

This implies that the damping and the frequency parameters

must scale in a similar manner

§/w + §/w o)
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and that the right~hand side must scale as a length, i.e.,
£/0iM + af/wiM. (8)

Furthermore, if the phase relations are to be preserved,

then Equation (5) implies that
wt -+ wt (9)

nust be invariant under a change in scale.

The above treatment assumed that the linear strain,
i.e., the change in displacement per unit length, is
invariant under a change in scale. It follows from this
same assumption that if the model is constructed of the
same méterial as the full-size prototype, then by Hooke’s
Law, the stresses will also be invariant. Thus, the forces

must scale as lengths squared:
2
F + a“F. (10)

Furthermore, if the model is indeed to be constructed of
the same material, then the mass must scale as a length

cubed,

M + adM, (11)

since, obviously, the volume scales as a length cubed.

Combining relations (10) and (11) yields

F/M + F/aM (12)
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which, when compared with Equation (2), shows that

acceleration scales as the inverse of a length, i.e.,

E+ E/a (13)
and also that

wo" wo/a- (14)
Comparing the latter relations with Equation (9) yields

t + at. (15)

Consequently, the effect of scaling on any parameter
can be found from only three of these relations: the
mechanical dimensions of length, mass, and time. Summariz-

ing these from above, one sees that if

L + alL,
then T + aT (16)
and M > a3M.

These relationships now need be applied only to the dimen-
sional equation of the parameter of interest. The more

commonly needed parameters in acoustics are summarized in

Table 1.
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TABLE 1

Summary of Scaling Relations

Prototype Model

g/a

acceleration.......o......-.-.

compliance..........-.-......o K K/a

dampingececsecccscccococasosnacse & §/a
densityeesocececscscsscscossens o]

displacementicesscsccssccesese £

elastic modulieeesecereeeneaes Y, G, B Y, G, B
@NEergYyecssccsesccccsenssscscses B
forceecececeecssccoccessnsnesss F
frequencCyYeeceosscocoscsoscsscsene W
impedance, characteristic...ss pc

intensity.oo.l.o"to.c‘ooc.... I

MASSeeeceeososossvsscsssnssscsccsoa M

Poisson’s Raticeesscscecsnnass V
POWET sesosossvssvscsesesenssose W
PreSSUr@eessssssssesssssssasces P
resistance, radiationsesssesece R
LOrQUeessesesessnccssnsscsassss T
velocityeesoeoeesnsenseencssss ¢

wave numberooo--uo.oooc’ooo'o. k k/a
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2.2 Collimated Acoustic Beams

The common theoretical treatments of sound interaction
with plates presumes the use of an acoustic plane wave.
Obviously, infinite plane waves do not exist in the labora-
tory. The most congenial experimental situation which one
can hope to obtain would be with the use of a collimated
acoustic beam. In general, however, acoustic beams are not
well collimated; they spread as they travel down range with
a characteristic angle known as the beam width. This angle
is dependent on the ratio of the lateral dimensions of the
transducer to the acoustic wavelength and can be wmade
"arbitrarily" small by increasing the diameter of the
transducer. Unfortunately, when one is working in a small
test tank, one cannot arbitrarily increase the size of the
transducer without quickly reaching the point of diminish-
ing returns.

Figure 1 shows the criteria which need to be met. The
figure 1is a full-scale schematic representing a typical
schlieren photograph depicting an acoustic beam reflected
from the surface of a plate. The c¢ross section of the
optical beam is five inches 1in diameter, and the acoustic
beam, which enters from the upper right, is depicted as
having a width of 2.5 inches. In order to determine the
reflection coefficient of the plate, one must, of course,

be able to resolve the incident and reflected beams. As

can be seen, this would become impossible if the diameter
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FIGURE 1. Acoustic beam reflection from a plate.
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of the acoustic beam was much greater than that shown in
this figure. The second point which needs to be made is
that, if the beam is spreading, then the on-axis intensity
of the reflected beam cannot be directly compared to the
on-axis intensity of the incident beam. The net result of
these observations is that one ideally would 1like to have
an acoustic beam which is no 1larger across than about half
the diameter of the optical beam and collimated over a
range of no less than four times its own diameter. In the
instant case, this requires an acoustic beam 2.5 inches in
diameter and 10 inches long.

The fact that one of the major goals of this research
is to demonstrate the feasibility of using the schlieren
technique at frequencies an order of magnitude 1lower than
frequencies traditionally wused with schlieren systems
somewhat complicates the task. In order to achieve the
same angular beam width at a frequency ten times lower one
must construct a transducer with a diameter ten times
larger. An examination of the near field of a vibrating
piston, as shown in Figure 2, 1indicates that the problem
can be resolved. The figure 1is a typical textbook illus-
tration [65]) showing the near field and the transition to
the far-field pattern of the piston. At the face of the
piston, the extreme near field is greatly complicated by
the occurrence of a series of peaks and nulls within the
cylindrical beam. However, in the remaining portion of the

near field between the last oun-axis peak in the extreme




FIGURE 2. The near field of ,a piston vibrator.




22

near field and the transition zone to the far-field r;gion,
the beam is relatively well-collimated and well-behaved.
The transition zone between the near and far fields
occurs at the intersection of the cylinder whose diameter
is given by the diameter of the piston and a cone of
half-angle ® emanating from the center of the piston face
(65]. One can thus see the trade-off involved: if the
diameter of the piston 1s made smaller (and thus the
diameter of the cylindrical beam), © will increase and the
transition zone will occur closer to the piston. Conse-
quently, the wuseful range of the transducer 1is reduced.
The minimum beam diameter, dm, can be defined as the cord

which subtends the angle 26 at a range, R:
dm/2 = R tan®. (17)

I1f the angular beam width is assumed to be measured between
the 3 dB down points (several other criteria are also in
common use), then the usual expression employed for the

beam half-angle is:
e = 30° a/d. (18)

Substituting this relation into Equation (17) together with
the fact that here the minimum range which can be tolerated
appears to be about 12 inches, one obtains the following

transcendental equation:

dm = 24 tan(31416/fdm) (in.) (19)
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The left- and right-hand members are graphed in Figure 3,
and the resulting solution for dm is shown in Figure 4. It
can be readily seen from Figure 4 that, although there are
no problems when working in the frequency raange generally
used with schlieren systems, i.e., about 1 MHz and above,
the criteria deduced from Figure 1 cannot be achieved for
frequencies below about 150 kHz. As will be seen in
Chapter 4, this is the most serious limitation on the low
frequency capabilities of the schlieren system in the form

in which it was implemented.

2.3 Plate Theory

2.3.1 Dispersion Relations

The problem to be treated consists basically of an

% infinite plane acoustic wave incident at an oblique angle

onto an infinite elastic plate submerged in a fluid. It
will be assumed that the plate is homogeneous, 1isotropic,

and bounded by parallel planes. At an arbitrary angle, the

acoustic energy will, in general, ©be partially reflected
and partially transmitted. The percentage which is trans-
mitted can be determined experimentally with relative ease 3
using the methods described 1in Chapter 3; hence, that
quantity (as a function of angle of incidence and of
frequency) will be used in the theoretical comparisons. i

Figure 5 shows the geometry of the problem wunder

consideration. For a plate of sufficient thickness (i.e.,
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FIGURE 3. A graphical solution of Equation (19). :
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FIGURE 4. The minimum acoustic beam diameter which can be

achieved for a given frequency.
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several wavelengths) several different modes of vibration
can be sustained. Each of these modes has a characteristic
phase velocity for a given frequency. Hence, as the angle
of incidence is 1increased from normal incidence, 0°, to
grazing incidence, 90°, the projection of these phase
velocities will, at specific angles, coincide with the
velocity vector of the incident wave. At these cainéidencé
angles the transmission ratio (transmitted intensity
relative to 1incident intensity) will show a sharp rise
approaching a value of unity, i.e., total transmission, or
equivalently, zero reflection. The dispersion relations or
formulae relating the phase velocities to the frequency
which describe these ©plate modes were first derived by
Rayleigh [1] and Lamb [3] for a plate in vacuo.

By assuming that both the incident plane wave and the
plate are infinite in extent, the problem reduces to one of

only two dimensions. The equations of motion for the plate

then (omitting a constant time factor exp[-jwt]) reduce to:

32 32¢
¢2 + s+ k12¢ = 0, (20)
3x Ay
2 2
3"’2 +3“’2 +k 2y= o0, (21)
t
Ix oy

where the wave numbers k and kt are for longitudinral and

1

the transverse waves, respectively. They are given by

2 2
kl = W pp/(x + 2u) (22)

= W pp/u,

amentuiidet;
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where )\ and p are the Lamé constants, °p is the density of
the plate, and w is the circular frequency. The particle
velocity can be found from the longitudinal and shear wave
potentials ¢ and ¥, respectively, by means of the relation-

ship
v=U¢+VX V. (24)

At the boundaries of the plate, 1i.e., at x = + h/2, the
stresses must be zero. These boundary conditions can be
substituted into equations (20) and (21) together with the

following representations for the solution:

= A ch{(k2 - k12)1/2x} ejky

+ B sh{(k? - klz)llzx} e JkY (25)

and

= ¢ sh{(k? - ktz)l/zx} e JkY

+ 0 enf? - 1, D 2k oIFY, (26)

where A, B, C, and D are arbitrary constants, and sh and ch
represent the hyperbolic sine and cosine functions, respec-
tively. Some minor algebraic manipulations yield the

eigenvalue equation

tanh{(kZ-k, %) 1/?

2
1

2,1/2

h/2} 4k2(k2-k1 ) 2

(kz_kt y1/2] 1

h/2) ko By’ (27)

1/2

tanh{(k2-k, %)
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where the solution arising from the longitudinal mode is
given by the minus sign in the exponent and that arising
from the transverse mode 1is givemn by the plus sign.
Solutions of this transcendental equation were very
difficult to obtain wuntil the advent of electronic compu-
ters. It was thus not until 1948 that Firestone [19] was
able to obtain a sufficiently complete numerical solution
which he then was able to compare with experimental
results. His data on the location of the transmission
peaks for an aluminum plate submerged 1in xylene offered
confirmation for the first ten modes and for frequencies up
to approximately fifty times the <c¢lassical coincidence

frequency of the plate.

2.3.2 Transmission Through a Mindlin Plate

The angular location of the peaks in the transmission
curve is, however, only part of the description. Also of
considerable interest 1is the magnitude and width of the
peaks, as well as, for that matter, the behavior between
the peaks. The classical derivations of the relevant
equations omit the effects of shear and rotary inertia.
Consequently, the equations are valid only for thin plates
(i.e., thin compared with the wavelength). The range of
validity is thus 1limited to frequencies near or below the
classical coincidence frequency. At these frequencies, the

higher Lamb modes cannot be excited and the phenomenon of

multiple peaks 1in the transmission curves discussed above

B R

4 nnr ke
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does not occur. In order to extend the range of validity
to higher frequencies, it is necessary to include the

effects of shear and rotary inertia as was done by Mindlin
[26]. The equations needed for direct comparison with
experiment can be found most quickly by following the work
of Stuart (40, 41]. |

Assuming an exp(-jwt) time dependence, the Mindlin

plate equation reduces to:

. . .- v e -

{[V2 + mSw2/D][V2 + mINz/D] - me/D} u(x) =

= 1/D [1 - sv? - msIw?/D] q(x), (28)

where m = p h, the density per unit area of the plate,

P
p_ = plate density,

h = plate thickness,

3 2

D=Eh” /12(1 - v©%),

E = Young’s Modulus,

vV = Poisson’s Ratio,

s = n% /622 (1 -v),
22 = Mindlin’s shear correction factor

(~ 0076 + 0.3\)),

I =h% /12,
u(x) = the transverse displacement
and q(x) = the distributed load.

Note that if the shear, S, and the rotary inertia, I, are
set equal to zero, this equation reduces to the classical

plate equation.,
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Taking the Fourier transform in space and expressing

the result in a nondimensional form yieids

nwlrol(x? - KIZ)(KZ - xsz) - 1] U(K) =

= 11+ a¥x P - kD1 ey, @29

where the following normalizations have been used:

Q = w/wc,
w, = J12 cz/h ¢ _, the classical coincidence

frequency,
K = kK/k = gin 8,

K. = KS/k = c/cs,

¢ =vi%es = JuPe P - w2,
P P
G = the shear modulus,
K, = Kl/k = c/cp,
2
= VE 1l - v
¢, ‘/ /( )Op

and ¢ = sound velocity in the surrounding medium.

The velocities cg and cP are those of the shear wave and
of the dilitational wave in the plate, respectively. The
parameters U and Q are the transforms of the displacement,

u, and of the loading, q, respectively, and are given by:
U= 7 u(x) € 4x, (30)
and
Q = [Za(x) eI ax. (31)

The impedance of the plate can now be found from the
ratio of the transformed net force, Q, ¢to the transformed

velocity, -jwU, as obtained from Equation (29), i.e.,

B T A e LR
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2y - 1]

1+ k2 e%x? - k2] T (32)

2,2 2 2
-juate?x? - kH«? -k

z - -
p/oc

The acoustic impedance at the surface of the plate is

found in a similar manner. Thus,

z_/oe = 3/(k% = D2« 1/cos o. (33)

The acoustic transfer function given by
T=22/(22, + zp) (34)

can now be evaluated by means of Equations (32) and (33)
and wused to predict the transmission ratio of a plate
submerged in a fluid as a function of the angle of

incidence, 8, and the frequency, w, of the incident beam.

2.3.3 The Longitudinal Plate Wave:

An Augmented Mindlin Equation

The equations derived in the previous section, which
were based on the Mindlin plate theory, do not describe the
full phenomenon. In fact, as Stuart [(40] states, they
represent only the effect of the first, and partially of
the second, antisymmetrical mode of the plate. Because
both of these modes occur only for those frequencies above
the <classical coincidence frequency, the most serious
omission 1is that of the first symmetrical moae, i.e., the
first longitudinal mode, of the plate, This mode can

produce a peak in the transmission curve even at

————r——
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frequencies below the coincidence frequency. For 1low
frequencies, an augmented Mindlin equation can be obtained
with relative ease.

Beginning with the 1longitudinal equation of motion

from Liamshev [31]:

2
2 m, d
[-V° + =1=—=) u, (x) =
D 3t2 1
2
h 2 m 2 3
= ﬁ[v +FI(V - 1)—-3—':—2] ql(x). (35)

Previously, u(x) and q(x) included only the antisymmetrical
components; here, ul(x) represents the symmetrical
displacement of the plate surface produced by the longitu-
dinal wave, and ql(x) represents the symmetrical loading on
the plate. This equation is valid only at low frequencies,
but, as will be seen later, 1its range of validity is very
much in line with that of the results derived for antisym-
metrical waves.

Proceeding as before, the Fourier Transformation of
Equation (35) is

2
2 1 =V 2 2, 2
1 ) Ul = S_i_E_Z h(R® - 2 KI ) Ql' (36)

(x% - K
The corresponding impedance is then given by

3
2 /pe = ==k - kP - kD, (37)

where g =2 2%/(knrp2.
This derivation serves to <correct several typographical

errors which occurred in Stuart and Jensen [66]. The
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results now appear to be consistent with those published by
Liamshev [32] but disagree with the recent work of Dym et
al. [67] by the equivalent of a factor of two in Zl.
The transmission ratio is thus given by

T =2 Za/(2 Za + Zp) + Za(Za + Zl). (38)

As will be seen in Chapter 5, this composite equation will
accurately predict the transmission of a sound wave through
a submerged plate at oblique angles for frequencies up to
nearly ten times the classical coincidence frequency of the

plate.

2.4 Bounded Beams

The theory developed in the preceding section applies
to infinitely wiée plane waves and predicts quite accu-
rately the far-field sound pressure level versus angle of
incidence. It does not, however, predict the lateral shift
or the feathering exhibited by acoustic beams having a
finite width. These phenomenon can be treated by introduc-
ing a Taylor series expansion in the development of the
reflection (or transmission) coeffecient.

First, the reflection coeffecient can be written in
the form

JoCk )

E(.cx> = R(x_) e . (39)

The reflected pressure can then be expressed by the trans-

form
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- je_x ek )

p.(x,0) =[F(k de * R(k)De % dc . (40)
Considering a bundle of plane waves travelling in slightly
different directions relative to the axis of the main beam,
a Taylor series expansion around Ky is equivalent to
physically summing many plane waves around Kis each

travelling in a slightly different direction. The resul-

tant 1s a bounded acoustic beam travelling in the Kyq

" "direction. The expansion takes the form

F(Kx) = F(Ki) + (Kx - Ki)F'(Ki)

= A 4+ BK ,
X
The reflection coeffecient becomes

R(Kx) = R(Ki)+(Kx-Ki)R’(Ki)exP{j[¢(Kx)+(Kx-Ki)¢’(Ki)]}+2;5)

100k,) )
= (R, + R,k )e exp{J(Kk =Kk, )0 (k )+eesl}. (44)
If the K dependence of F and R is neglected relative to
that of the exponent, then the reflection <coefficient

simply becomes
R(Kx) = R(Ki)exp{j[(Kx‘Ki)¢'(Ki)+...]}

and the Fourier integeral for the pressure reduces to

o jKix ijx
Pe -f_mF(Ki)e R(Ki)exp{(Kx-Ki)¢'}e dKi

. “ik 6 ko (x=0")
=T Rk OR(K,) e TP e X dr,

%
E
3
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=  R(k )p, (x-9¢").
i°%F1 (48)
Thus, the reflected and transmitted beams are shifted in

the positive x direction by
Ax = ¢’ . (49)

This same mathematical treatment is frequently used in the
computation of transients for filter designs.

The preceding computation assumes that Ke ~ Ky» 8O
that F(Kx) = F(Ki) and R(Kx) = R(Ki), and thus considers
only a narrow angular region. If this assumption does not
apply, it may be necessary to decompose R and F 1into
several K, 8roups and perform the integration for each
group separately.

The <c¢critical asumption 1is in the Taylor series

development, i.e., that the phase angle is given by
Bk, ) = Bk + (K =K DO (k) + .o (50)

)

This implies that the contributing wavenumber range (Kx-!ci
must be small, since ¢'(K1) may change quite rapidly for
large values of (Kx-ri). Hence, the angular spectrum of

the incident beam must be narrow, since the contributing

wavenumber range for a beam of width a is of order

K T K~ T/a. (51)

The width of the beam must then be large compared to ¢'(K1)

which is equal to the magnitude of the beam shift, since

the Taylor series will converge if




n,n
(kemrg D) << L, (52)
or to a first order approximation 1if

(Kx-Ki) <KL 1/¢'(Ki)- (53)

2.5 Transmission of Bounded Beams

If the amplitude of the incident wave is constant, and
its trace velocity is such that k sin9° is equal to the
wavenumber, Koo of a free plate wave, 1{.e., a Lambd wave,
then only this wave will be excited and other wave compo-
nents can be neglected. Under non-ideal conditions, other
waves may be excited; most frequently, these waves arise
because of the finite width of the beam and because of

inhomogeneities in the velocity distribution of the inci-

dent beam.

If the half-width of the acoustic beam is a, then in
the interval ~-a < x < a, the forced excitation creates two
plate waves travelling in opposite directions (see Figure
6). The wave propagating in the same direction as the
incident wave, f.e. whose Ko has the same sign, will have a
significantly greater magnitude. Assuming that Ky is

positive, then

je % -x"(x+a) jzn(x+a)
p=D(k)le ° - e 1. (56)

The two waves interfere because of the phase difference.

At the left edge, the 1interference is destructive and the

erne
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FIGURE 6. Plate wave excited by a bounded bean.
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net result 1is zero. At the right, the 1interference {is
constructive and groﬁs exponentially toward the value
D(Ko). The plate wave must travel a distance approximately
equal to the excitation distance before reaching full
amplitude; thus, if the beam width is small compared to
1/ Ko", the transmitted wave may be considerably smaller
than the predition for a beam of infinite width. This

excitation distance is given by

wn/2 = (2r/wn)(W/2) = r/m = pocolpph (55)

" = =
Ko um/ecp pocolopcph (56)

For the case of an aluminum plate in water, Kn" becomes:

"o
Kn h/10 (57)
and

= "o .
Xoxt 1/l<n 10h (58)

For a longitudinal plate vibration, the tranverse vibration
is approximately equal to né (é being the longitudinal
velocity component) and the excitation distance is approxi-

mately l/n2 times as great, l.e.,

Xoxt ~ 100h. (59)

Thus, for longitudinal waves, the excitation distance is

significantly greater than for transverse vibrations.




CHAPTER 3

EXPERIMENTAL APPARATUS

3.1 Introduction

The data were obtained with a quantitative schlieren

system. A general schematic of the system is shown in
Figure 7, and schematics of the electronic layouts are
shown in Figures 8 and 9. The geometrical configuration

depicted in Figure 7 originated with Toepler’s work in the
1860°s [68-72). Although several other configurations have
been developed since then, this is still one of the most
successful of the choices available. The only changes from
Toepler’s original design are direct substitutions of
modern technology. A laser, for example, was substituted
for the spark gap, which Toepler wused for a light source,
since the major requirement was simply high intensity. The
only other significant change, assuming that modern elec-
tronics can pass without mention, was the substitution of a
closed circuit TV camera at the exact position Toepler
described as the location at which the experimenter should

place his eye. Actually, there are also other ways in

which the schlieren image could be observed. These include
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FIGURE 7. The schlieren experimental system.
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placing a ground glass screen or a photographic _plate at
this same location. The photographs presented both by
Toepler in the 1860°s and those presented herein were
obtained in this manner.

The use .of a vidicon, however, opened up the possibil-
ity of obtaining quantitative data. Earlier attempts to
quantize schlieren data were limited to densitometer
analyses of schlieren photographs, which were not overly
successful. In recent years, considerable technology has
evolved for processing video signals, which gives rise to
an alternative approach. Briefly, it consists of sampling
the voltages at equidistant points along each horizontal
line of the video scan, storing the resulting data points
(which represent brightness), and then plotting the sequen-
tial 1list. This produces a plot corresponding to optical
intensity along a vertical line down the TV screen. Since
optical intensity can be directly related to acoustic
pressure amplitude in a schlieren 1image, this plot also
corresponds to the amplitude of the acoustic field along

this vertical slice.

3.1.1 Optical Systenm

The details of the optical system can be understood
most easily by following the path taken by the laser beam
as it passes through the apparatus, 1i.e., left to right as

shown in Figure 7. The light source was a Spectra Physics

Model 125 laser, which generated a continuous 50 mW beam of

L




45

632.8 nm light. This beam was strobed by means of an
Isomet Model 1205 Acousto-Optic Modulator. The Modulator,
basically a Bragg crystal deflector, was driven with a
Dranetz Tone Burst-Timing Generator (Series 206). This
also supplied the acoustic pulse to the transducer and thus
permitted a precise adjustment of the time delay between
the optical strobe and the acoustic pulse. The net result
was that the acoustic pulse could be photographed at
numerous discrete ©points, and thus its path across the
field of view could be determined even when the pulse
reflected back from complex structures scattering out in
many directions. An electronic interface was designed and
constructed for the ©purpose of mating the Tone Burst
Generator to the Acousto-Optical Modulator, which were
originally incompatible with one another. By incorporating
a monostable multivibrator in this interface, it was
possible to improve the strobe speed from 10 uc to 100 ns.
The speed was continuously adjustable from 100 ns to 100
us. Normally, the duty cycle was set between 2 - 5 kHz.
Even at these speeds, there was sufficient 1light passing
through the system to require the use of neutral density
filters in order not to oversaturate the TV camera. The
100 ns strobe speed allowed the acoustic pulse only enough
time to travel 0.006 in. through the water, which obviously
produced no observable smearing of the resulting photo-
graphs. This was a <considerable improvement over the
original 10 us strobe speed, which would have permitted a

skid of over half an inch.

et e o
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Having travelled through the Acousto=~Optical
Modulator, the laser Dbeam passed into a Space~Optics
Research Labs optical beam expander. This consisted of

little more than a pin hole and the necessary optics for
isolating and collimating the light in the zeroth diffrac-
tion ordeg created by the pin hole. The resulting 5 in,
diameter beam then passed into the test tank.

The tank was constructed from 1/2 and 3/4 in. sheets
of Lexan, with a width and height of 2 ft and a length of &
ft 3 in. Waterproofing was accomplished by means of the
same silicone rubber sealant wused in commercial aquariums.
Aluminum angle bracing was added to the 1long sides to
reduce the bowing produced by the weight of the water. The
clear Lexan greatly eased the problems of positioning the
transducers and various test samples, but it was not, of
course, of sufficient optical quality to consider passing
the expanded laser beam through it. Consequently, 10 in.
diameter holes were <cut out of the two long sides and
replaced with 1/10 wave optical glass windows. The use of
optical glass seems, in retrospect, to be unnecessary. Due
to several serious reams in the original pair of optical
glass windows, they‘ were returned to the manufacture for
exchange, and the apparatus was used for several months
with ordinary float-glass windows. The results were
sufficiently satisfactory that it appears the best proce-
dure would have been simply procuring a half-dozen pieces

of float glass and using the pair which performed best.
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A pair of sliding cross rails were added to the top of
the tank for use in positioning the transducer and the test
samples. A small 1low-geared motor was used to raise and
lower the projection angle of the transducer. . Angular
scales, which were inscribed at each degree, were included
for determining the pitch angle of the transducer and the
yaw angle of the test sample. The reproducibility was
easily within 1/4 degree when the backlash in the gears was
correctly countered.

Upon leaving the test tank, the optical beam passed
through a 30 in. focal 1length Space Optics Research Lab
lens; this focused the beam onto a slide glass cover
resulting in a spot approximately 1/2 mm in diameter. An
opaque stop, which was as nearly as possible the same size
and shape as the spot of light, was placed at this focal
point. The zeroth diffraction order was thus completely
blocked out and only higher diffraction orders produced by
the acoustic disturbances in the water, if any, passed into

the TV camera.

3.1.2 Spatial Filtering

The size of the optical stop is critical. It must be
large enough to block out all of the light passing through
the quiescent system; otherwise, the background level is
increased and the dynamic range of the system is degraded.
Therefore, the stop must be at least as large as the circle

of least confusion; the question is how much larger - if




48

larger at all. From the original series of papers by Raman
and Nath [73 - 79], it is quite well known-that the rela-
tive intensity of each diffraction order is given by the
square of the Bessel Function, an(v), where n is the order

number and v is the Raman-Nath parameter,
v = kUL, (60)

where p is the index of refraction in the medium and L is
the width of the sound beam. If the =zeroth order 1is
filtered out and all remaining orders passed through, the

resulting intensity is then given by
[
I =2 ) J %v). (61)

This is shown graphically in Figure 10. Also shown are the
corresponding curves for larger stops, and specifically for
a stop which blocks both the zeroth and the first order and
one which blocks the zeroth, the first and the second
order.

A line which approximates the background 1level found
with the actual experimental system is also included. This
background is mainly due to the ambient room 1light, but
also includes stray light from scattering phenomenon, etc.
The background was minimized by collecting all data at
night when the overhead work area lights could be extin-
guished.

The dynamic range to be expected from the system can

be estimated from the point at which the intensity rises
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FIGURE 10, The resulting effect on optical intensity for
spatial filters of various sizes. n=1 blocks only the
zeroth order; n=2 blocks the zeroth and first orders; and
n=3 blocks the zeroth, first and second orders [cf. 80].
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above the background and the point at which the curve
becomes multivalued. If only the zeroth srder is stopped,
the dynamic range is thus seen to be about 20 dB; stopping
the first order in addition to the zeroth order reduces
this to 11 dB; and increasing the stop size further to
include the second diffraction order further reduces the
dynamic range to 8 dB. The conclusion seems to be that the
preferable choice 1is to stop only the zeroth order.
Experimentally, this is by far the most convenient choice,
gsince the size of the circle of least confusion is indepen-
dent of the acoustic frequency, while the distance between
the diffraction orders 1s directly related to the
frequency. Thus if one wished to block both the zeroth and
first orders different-sized stops would be needed for each
frequency of interest. If only the zeroth order is to be
plocked, only one size stop is needed.

The actual stop was mounted in a ring with a finite
diameter, which means that not all of the infinite set of
diffraction orders was passed through to the video camera.
Figure 11 shows, for the first time, the effect of trans-
mitting only a few diffraction orders, i.e., of prematurely
truncating the series given in Equation (61). It can Se
cleafly seen that surprisingly few terms need to be
included in order to approximate the useful portion of the
curve. Four diffraction orders are sufficient to duplicate
the part of the curve lying between v = 0 and v = 2,405,

which covers all intensities between I = 0 and I = 1],

o e e S
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respectively. The size of the holdep ring was far too
large to have any detrimental effect on the schlieren
image, even at the highest frequencies used. An interest-
ing possiblity would be an attempt to use this fact to
filter out the higher harmonics of the acoustic transducer
by adjusting the diameter of a concentric ring surrounding
the stop. The higher harmonics are especially prevalent in
photographs taken at extremely 1low frequencies, since the
sensitivity of the schlieren system is highly dependent on

the acoustic frequency.

3.1.3 The Acoustic System

The acoustic system interfaced with the optical system
as shown in Figure 8. This portion of the experimental
equipment was indicated in the general figure (Figure 6)
simply as a tone-burst generator. In reality, a Hewlett
Packard Model 606B Signal Generator was used to produce a
cortinuous sine wave signal for the frequency range above
50 kHz and a GenRad Type 1162A Frequency Synthesizer was
used for lower frequencies. The Tone-Burst Generator,
which was described 1in Section 3.1.1, then gated this
signal into a series of short (generally 10 us) pulses and
simultaneously produced the timing signals used to strobe
the laser beam. The acoustic pulses were amplified with a
Model 240L ENI Class A RF power amplifier and matched to

the transducers by means of an ENI Model 240-2T trans-

former.
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The acoustic transducers (see Table 2) were, for the

most part, constructed from single thickness-mode discs of
PZT-4 ceramic. The discs were mounted in cylindrical
aluminum housings with air backing by use of silicone
rubber sealant. The design criteria developed in Section
2.2 were used and proved to be quite successful. The
resulting transducers were quite well <collimated in the
range of 3-12 in. One additional transducer, shown in
Figure 12, was constructed for use at frequencies below 30

kHz using the traditional tonpilz design.

3.1.4 Data Acquisition

The data acquisition system layout 1is shown in Figure
9. Briefly, the data were obtained by electronically
sampling the horizontal 1lines on a standard television
raster. The starting point of each line was identified by
means of the blanking pulse and then, after a given delay
time, the voltage was stored and the next 1line sampled.
The resulting set of sequential stored values corresponded
to the wvoltage curve plotted along a vertical slice down
the screen. This vertical sample line could be adjusted to
any required location by simply adjusting the given delay
time. The stored data was either displayed in real time on
an oscilloscope was plotted by means of an x-y plotter.

Two calibrations were necesgsary. First, the response

characteristics of the vidicon tube had to be found.

Normally, this would have to be repeated for a large number




TRANSDUCERS

: Ident. : Resonance : Diameter :
i i i i
| AL180A ! 195 kHz ! 2.0 in. |
: AL180B : 190 : 2.0 :
: AL180C : 189 : 2.0 :
: AL340A : 353 : 1.5 :
: AL680A : 692 : 1.0 :
: AL680B : 688 : 1.0 :
: BR-1 : 362 : 1.0 :
: AL-27 : 27 : 1.5 in. sq. :
| l ! |
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FIGURE 12, Tonpilz transducer resonant at 27 kHz.
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of locations across the face of the tube, since the
response falls off quite noticeably near the edges.

Because of the experimental techniques described in Section
5.3, this was generally avoided and only the response curve
for the center point of the tube was necessary. This was
determined by turning off the acoustic systenm, which has
nothing to do with this particular calibration, and record-
ing the voltage sample level for the laser beam maskea by a
large range of neutral density filters. This produced the
characteristic curve shown in Figure 13.

The second <calibration gives the correlation between
the acoustic pressure and the optical intensity. This was
performed by placing an acoustic beam across the center of
the field of view and taking data scans for a wide range of
transducer drive voltages. The actual voltage at the input
terminals of the transducer was used to avoid the possibil-
ity of nonlinearities arising from the amplifier circuits.
This still assumes that the transducer itself was linear,
which is generally not an unreasonable assumption. The
resulting calibration curve is shown in Figure 1l4. This
data collection system is described more fully by Stanic

[8110
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CHAPTER &

QUALITATIVE OBSERVATIONS

4.1 Low Frequency Schlieren

Schlieren systems have long been used for qualitative
studies of sound fields. The quantitative data presented
in Chapter 5 demonstrate clearly that schlieren systems can
now be used to obtain very accurate quantitative descrip-
tions of acoustic fields. Such quantitative data, however,
only supplements the more traditional schlieren photo-
graphs; it cannot, and is not intended to, supplant the
photographic representations which yield excellent over-
views by means of their full two-dimensional depictions of
acoustic fields. The quantitative data curves on the other
hand are intended to <collect the amplitudes of single
points on the photographs and show the change in that
amplitude as a function of the various parameters such as
angle of incidence or frequenéy. It should be noted that
the observations presented in this chapter resulted from
over 1000 hours of viewing real-time schlieren images; the
photographs presented herein were <culled from the full
collection for their representativeness and for their

reproducibility.
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One of the most striking achievements of this research
was the demonstration of the schlieren effect at frequen-
cies nearly two orders of magnitude 1lower than those
traditionally used with the schlieren technique. Figure 15
shows a very clear, sharp photograph of an acoustic field
at 27 kHz. The lowest limit achieved by earlier investiga-

tors was 50 percent higher than this frequency [82].

4.2 Transmission Through Flat Plates

Figure 16 depicts the acoustic transmission through a
0.032 in. thick aluminum plate at a frequency 7.7 times the
classical coincidence frequency of the plate. This corres-
ponds to the same conditions as for Figure 36. The inci-
dent beam in these photographs, and those to follow, enters
from the upper left, and is partially transmitted into the
lower right quadrant and partially reflected into the lower
left. Figure 16(a) shows the transmission at the critical
angle for the Ao Lamb mode, and Figure 16(b) shows the S0
Lamb mode. Two observations should be noted, both of which
are more clearly shown in Figure 16(b). First, the
reflected beam shows the characteristic dark band, which
has been interpreted [55] as the overlap of the specularly
reflected beam and the reradiated field from the Lamb wave,
which are 180° out of phase and thus cancel each other.
Second, by lining up the upper edges of the incident and
transmitted beams, one can see an obvious downward shift in

the location of the transmitted beam from that which would




61

FIGURE 15. Schlieren visualization of a 27 kHz acoustic
field.
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be normally expected. This shift was first explained by
Schoch [53]}. Very precise experimental measurements by

Neubauer [54] exposed flaws in Schoch’s theory due to his
assumption of a flat intesity distribution across the bean
and to the inapplicability of the theory to narrow acoustic
beam widths. By interpreting the shifted beam as a reradi-
ated beam produced by the Lamb wave travelling down the
plate, Bertoni and Tamir [55] obtained very satisfactory
agreenent with Neubauer’s measurements.

Figure 16 was obtained by wusing a continuous acoustic
beam, while Figure 17 was obtained by using a short 10 us
pulsge. Figure 17 shows the reradiation from the A1 Lamb
wave for the same condition as Figure 16. The photograph
was taken approximately 30 us after the incident pulse
contacted the plate; as the Lamb wave travelled down the
plate, 1t reradiated energy into the surrounding medium.
This gradual loss of energy in the plate wave 1is shown by
the corresponding 1loss 1in intensity of the reradiated
pulse. Note that the upper portion of the pulse is thus
much brighter than the lower portion.

A small pulse of acoustic energy incident at an
oblique angle on an infinite plate normall& reflects back
as a compact pulse package retaining its original shape.
However, as was shown in Figure 17, if a Lamb mode is
excited, the shape of the pulse can be greatly elongated.
A distortion in the shape of the pulse can occur, even for

normally incident pulses as i3 shown in the sequence of
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FIGURE 17. Transmission of a 10 us acoustic pulse through
a 0.032 in, thick aluminum plate at a frequency of 2,125
MHz, which 1{s 7.78 times the <classical coincidence

frequency of the plate. Transducer AL680B which has a beam
width of 1.0 in. was used. The A1 Lamb mode is excited at
an angle of incidence of 6.5°.




FIGURE 18. Transmission of a 10 us acoustic pulse through
a 0.501 in. thick aluminum plate at a frequency of 680 kHz,
which is 14.9 times the <classical coincidence frequency of
the plate. At normal incidence this excites the S, Lamb
mode. Transducer AL680A which has a beam width of 1.0 in.

was used.
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photographs reproduced in Figure 18, which shows the

initial emergence of the S1 Lamb mode at 0°.

4.3 Edge Effects

As has Dbeen seen, when an incident wave strikes an
infinite plate, or one of sufficient size that the edges
are many wavelengths away, then there are beams transmitted
and reflected (or reradiated) in only two directions. Near
the edge of a finite plate, however, the Lamb wave will be
reflected from the plate edge and travel back up the plate.
This can set up a strong standing wave in the plate, which
will then greatly complicate the resulting radiation
pattern. This 1is demonstrated in Figure 19. In this
photograph, the So Lamb mode has been excited and the
superposition of the fields reradiated by the Lamb wave
travelliné in opposite directions in the plate shows a
clear standing wave pattern in the surrounding medium with
the wave fronts perpendicular to the plate. It 1is not
uncommon to see standing-wave patterns near a plate due to
the superposition of the 1incident and the specularly
reflected wave, but, in that case, the wave fronts are
necessarily parallel to the plate, not perpendicular.
Furthermore, they appear only on one side of the plate.

As was noted above, one normally sees only two beams
emerging from the plate. When a Lamb mode is excited, the
situation becomes more complex because there is now a

radiation field superimposed on top of the specular field.
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FIGURE 19. Transmission of an acoustic beam through a
0.023 in. thick steel plate at a frequency of 2.125 MHz,
which is 5.26 times the <classical coincidence frequency of
the plate. The gO Lamb wave is &excited at an angle of
incidence of 17.57; the edge of the plate causes the
formation of a standing wave pattern in the surrounding
medium. Transducer AL680B which has a beam width of 1.0
in. was used.
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For an infinite plate, there is little energy radiated into
the upper quadrants but, near the edge of a finite plate,
this is not true. In Figure 20, the incident beam has been
moved even closer to the edge than was the case for Figure
19. Figure 20(a) shows a beam being radiated quite
strongly into the upper right quadrant. By changing from a
continuous beam to a pulse, as in Figure 20(b), 1t can be
further seen that there is also a strong beam being radi-
ated directly back along the path of the incident bean
toward the transducer. The same phenomenon can be seen
again in Figure 21 for a much lower frequency. Backscat~-
tering does not occur near the center of the sample plates
with nearly as great an intensity as near the edges, which
can be seen by comparing these last two figures with Figure
22. This figure shows a direct comparison between a bean
incident near the center and one 1incident near the edge of

the same stéel plate with the same acoustic conditions.

4,4 Negative Phase Velocities

The dispersion curves 1In Figure 53 for aluminum show
that, 1in a very narrow frequency range near the onset of
the S1 Lamb mode, the individual modal- curves can become
double=-valued. Both Tblstoy and Usdin [61] and Viktorov
[49] speculated that this could be caused by the occurrence
of a negative phase velocity. This would imply that the

Lamb wave travels in the opposite direction in the plate

from the previous examples in this chapter. This would

——
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result in the reradiated pulse from the Lamb wave appearing
on the opposite side of the plate~normal from the specu-
larly reflected pulse. The time sequence of photographs in
Figure 23 shows this. Note that, in Figure 23(c), the
transmitted pulse is shifted wupwards rather than downwards
as before. In the remainder of the sequence one can see
that the dark area representing the overlap of the specu-
larly reflected pulse and the radiation from the Lamb wave
is also angled in the opposite direction from the previous
cases. Refer back to Figure 16, for example.

The sequence in Figure 24 shows a gradual increase in
the angle of incidence. The phenomenon is quite obviously
confined to a very narrow angular region as should be
expected. It is also confined to a very narrow frequency

range as is shown in the sequence in Figure 25.

4.5 Stroboscopic Observations

Under normal conditions, the schlieren system 1is
operated in such a way that all data are <collected using
uniform, continuous acoustic beams as was shown in Figures
26. This is necessary to obtain accurate quantitative
values for the magnitude of the ©peak of the resulting beanm
profile. It also possible to adjust the period of the
flashing laser beam and the acoustic frequency so that a

stroboscopic effect will result. A schlieren photograph

showing this possiblity is shown in Figure 27. The photo-

somewhat misleading.

The standing

graph 1s, at first,
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FIGURE 27. A 680 kHz acoustic beam is incident on a 0.0%3
in. thick 304-stainless steel plate at an angle of 10 .
The travelling wave fronts on the transmitted side of the
plate are frozen by adjusting the strobosccpic repetition
period to T, = 2 ms. The wave fronts appear stationary
only at the "discrete acoustic frequencies of 620.000 kHz,
620.250 kHz, 620.500 kHz, etc. Transducer AL680A was used
which has a beam width of 1.0 in.
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waves produced by the.overlap of the incident and reflected
beams are shown occurring parallel to the plate as would be
expected and, 1in fact, has been observed in other photo~
graphs. There are also stationary wavefronts perpendicular
to the plate, but these represent travelling waves in the
plate which have been frozen by the stroboscopic effect.
Proof that this is in fact the correct interpretation of
the photograph is presented in Figure 28 and Table 3. For

a fixed value of the strobe period, T, = 2 ms in this case,

1
the wave fronts perpendicular to the plate appear to be
stationary only at discrete acoustic frequencies. For the
case shown, these discrete frequencies are spaced exactly
250 kHz apart, 1i.e., at f = 1/2T1, which is to be
expected since the distance between the fronts shown in the
schlieren images is A/2.

The stroboscopic schlieren effect lends itself to many
applications. The distance between the travelling wave
fronts that appear perpendicular to the plate is determined
by the incidence angle and the wavelength in the surround-
ing medium. Thus, given the acoustic frequency and the
angle of incidence, the velocity in the surrounding medium
can be found from the distance between these wavefroats (c
= 2fd sin8). In soﬁe applications, the angle of incidence
is difficult to determine; the stroboscopic schlieren
method could prove useful in that case. A valuable appli-

cation for the current schlieren system would be as a means

to obtain a very accurate calibration of the linear
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TABLE 3

Acoustic Frequencies Producing the Stroboscopic Effect

[Spacing |
] ]

i

I'’/2sin®

A

| sin® |
| L

Q Angle

Freq.

5 AN A s iRl
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distances depicted on the photographs and on the dataline
plots such as were shown in Figures 26 aéd 28. This
calibration 1is normally quite difficult to obtain accu-
rately and 1s necessary for the investigation of the beam

shift phenomenon, etc.

4.6 Examples

The standing wave pattern shown in Figure 19 was
produced by the reflection of the So Lamb wave from the
free edge of the plate. The spacing between the wave
fronts agrees quite well with the value of one-half the
trace wave length at the plate surface. This can be
checked in two ways. First, the diameter of the circular
image corresponds to the aperture of the optical beam which
is known to be 5 in. Thus, the scaling factor of the
figure is 1:1.69 and the spacing is 0.0485 1in. The theor-~

etical spacing can be calculated from the measured angle of

incidence, 17.5°, and frequency, 2.125 MHz. Hence,

A/2 - AW/Z sinei = cw/Zf sinei
= 000469 in. (62)

Similar analysis of more complex experimental geome-
tries is also possible. Figure 29 shows an experimental
model with a short 10 us pulse of 900 kHz sound incident on
it from the lower left. The pulse struck the flat bottom
of the model just to the left of the field of view approxi-

mately 40 us before the photograph was taken, The surface

pregram
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FIGURE 29. Example of the detail of analysis possible with
A 10 us pulse

stroboscopic schlieren techniques.

kHz sound is
structure (83].

shown incident on

the bottom

of a

kit

of 900
curved
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wave travelling along the curved bottom radiates out into
the medium as is shown by ‘the curved sound field below the
model. When the plate wave strikes the prow, it radiates
out into the medium in the forward direction, and also a
portion of it reflects back in the plate creating a stand~-
ing wave evidenced by the wave fronts which appear in the
surrounding medium perpendicular to the surface of the
model.

The distance between the wave fronts in the forward
radiated field correspond closely to the expected 0.067 in.
wavelength of the 900 kHz signal. The spacing between the
wave front perpendicular to the surface, however, are
considerably larger than what would be expected based on
the measurements previously presented for flat plates. The
actual velocity of compressional waves in the aluminum

plate used for the bottom of the model was measured in the

Applied Research Laboratory’s Non-Destructive Testing

Facility and was found to be 6861 m/s. This was consider-
ably higher than the 5400 m/s8 velocity found for all of the
aluminum alloys used in the 1investigations of flat plates.
This would explain much of the discrepancy in the spacing

of the perpendicular wave froats.

4.7 Welded Plates

An important practical question in many engineering
applications concerns the effect of structural welds on the

reflected and transmitted sound fields. In order to gain

b Sl Lou s g PO TR YA | S PR TR A I S = S T
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further insight into this question several models were
constrgcted with different types of joints. A comparison
of ribbed plates is shown in Figures 30 to 32. In Figure
30, two models are shown at identical experimental condi-
tions. The model shown on the left was constructed by
welding the rib into place; the model on the right was
machined to the same dimensions from a single block of
material. As can be seen, the structure of the transmitted
sound field is quite similar, while that of the reflected
field is not at all the same. The frequency and angle were
chosen such that the Ao Lamb mode was excited in the plate.
The reflected field in Figure 30 (b) has the same charac-
teristics as exhibited by beams reflected from plain f{at
plates near a Lamb mode; i.e., an overlap of a specular
reflected field and a reradiated field with the dark band
due to the 180° difference in phase between the two fields.
The welded plate in Figure 30 (a), on the other hand, 1is
quite dissimilar. It is evident that the weld bead has had
a considerable effect on the flexural wave as it travelled
down the plate. A similar comparison is shown in Figure
31. Although the same Ao Lamb mode has been excited, the
difference between the. two reflected fields is not nearly
as sharp.

Figure 32 has been obtained wusing a stroboscopic
effect and can be analyzed in somewhat more detail. The
diameter of the optical aperture, the thickness of the

plate and the spacing between the wavefronts 1in the
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FIGURE 32. Acoustic beam incident of a 0.056 in. thick
304-stainless steel plate with a machined joint at an angle

{ of 40°. The A0 Lamb wave is excited at a frequency of 622
kHz.
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incident beam all provide means of determining the linear
scaling factor of the figure and all agree to within 3
percent of each other. Thus, the actual spacing between
other features of interest can be obtained quite reliably.
The spacing between the wavefronts which occur parallel to
the plate on the incident side are due to the standing
waves formed by the superposition of the 1incident and
reflected waves. At 622 kHz, the wavelength of the inci-
dent sound beam should be 2.39 mm and, at 400, the spacing
between these standing wavefronts should bde 3.12 mm (i.e.,
A cos8). The actual measured spacing 1is 3.1 mm. The AO
Lamb mode radiates sound from the plate in such a way that
wavefronts are formed perpendicular to the plate and have a
spacing A/sin®. These are seen most clearly on the right
side of the plate just above the rib. The measured spacing
between these wavefronts is 3.6 mm which compares quite
favorably with the computed spacing of 3.72 nm. The
wavefronts evident below and perpendicular to the ribd
exhibit the same measured spacing, 3.6 mm; it 1is thus
apparent that the same Ao Lamb mode has been excited in the
rib as was excited in the plate.

. To investigate this more thoroughly, a set of models
were constructed by butt~joining pieces of sheet steel
edge-to-edge, by several different methods. Figure 33
shows a reference photograph of a solid plate having no
joint together with three plates of the same material but

joined by soft soldering, by silver soldering, and by
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welding, respectively. The soft solder, Figure‘33(b),
shows a beam being radiated into the wupper right quadrant
of the photograph, just as one would expect from the free
edge of a plate (see Figure 20, for example). The silver
solder, which forms a stiffer joint, shows a reduction in
the 1intensity of this particular beam, and the final
photograph of Figure 33 shows that the welded plate, which
has an even higher stiffness, exhibits no evidence of a
beam in the upper right quadraat. The correlation of this
sequence of photographs with the stiffness of the joint and
the resulting similarities with the previous photographs

showing the effects of free edges is quite remarkable.

o




CHAPTER 5

QUANTITATIVE RESULTS

5.1 Benchmarks
The two benchmarks against which the success of this

experimental method must be judged are the previous quanti-

tative schlieren techniques by Smirnov et al. {84] which
used densitometry methods and by Stanic [81] which used
video sampling methods. Densitometry: requires careful

preparation of photographic negatives and their accompany-

ing calibration curves. .This is a slow tedious task since i

the results are highly sensitive to the timing, tempera- :

ture, etc., of the photographic development process.
Spectroscopists, however, have raised densitometry to a i
high art form and the results of Smirnov et al. reflect

this. They present a table of 25 data points for the
transmission through plates which demonstrate an agreement
with theory with an error of only 6 percent.

The video sampling method used by Stanic (and in this
investigation) should be capable of the same degree of ;
accuracy obtained by Smirnov, if not greater., The calibra-

tion procedures are nearly identical, except that it is a
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vidicon tube' which must be calibrated rather than a
shipment of photographic supplies. This should be an
advantage over the densitometry method. The results
published by Stanic do not reflect this expectation. He
gives no estimation of error, but one can easily be found
by performing a regression analysis on the 85 data points
he presents in Reference ([81]. Data from Figure 36 of
Reference [81)] is replotted in Figure 34 with the classical
and Mindlin theories added for <comparison. Note that
because no data 1s included near the region of 0° to 30°
that the 1inclusion or omission of the longitudinal wave
term developed in Section 2.3.3 1is immaterial in the error
calculation. These data can thus be regressed onto the
Mindlin curve (known to be more accurate than the classical
theory in this frequency range) and the RMS value of the
residuals gives a value of 75 percent for the standard
error of estimate, which does not campare favorably with
the 6 percent error found by Smirnov. Even more disturbing
is the fact that, when the data is regressed onto the
classical curve, the standard error improves slightly,
indicating that the data does not support the Mindlin
theory as well as it does the classical.

The remainder of this chapter will be devoted to an
attempt to vindicate both the video sampling method of
quantizing schlieren data as well as the Mindlin plate
theory. Additionally, data will be presented which demons~-

trate the effects of the longitudinal wave term. It will
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also be shown that not only 1is the video method capable of
the same 5-6 percent level of accuracy fouﬁd by the densi-
tometry method but that the schlieren system developed at
the Applied Research Laboratory is able to maintain that

level of accuracy at frequencies as low as 179 kHz.

5.2 Simple Plates

Extensive transmission data were collected on simple
flat metal plates. Seven thicknesses of sheet aluminum and
six transducers with different resonance frequencies and
accompanying higher harmoniecs provided an effective
frequency range from 0.5 to 110 times the classical coinci-
dence frequency of the plate. Consequently, it was possi-
ble to plot transmission loss curves as a function of the
angle of incidence for nearly 100 values of the frequency
parameter, (. Each of these contained approximately 70
data points spaced at one-degree increments ranging from
normal incidence, 0°, to about 70°, at which point the edge
effects of the plate rendered interpretation of the data
difficult. Although most of the data were obtained using
aluminum plates, representative data were also obtained for
304=~-stainless steel plates. The angular locations of the
peaks were then summarized in a single curve (for aluminum)
which represents the dispersion of the sound velocity in

the plate.

an




5.3 Transmission Loss Cﬁrves

Transmission loss curves were obtained by comparing
the level of the transmitted sound to the level of the
incident sound beam at the same physical location 1in the
tank by simply removing the plate to obtain a reference
level. This technique removed the necessity of obtaining
calibration curves for a large network of points across the
vidicon tube. This would normally have to be done since
the response falls off near the edges of the tube. Angular
data were then obtained by rotating the sample about its
vertical axis, which can be visualized most easily by
referring to Figure 6.

Figures 35 and 36 show representative curves for
aluminum and stainless steel, respectively, at frequencies
below coincidence. Also included are the theoretical
predictions based on the clagsical plate theory and on the
augmented Mindlin theory developed in Section 2.3.3. At a
frequency as low as this, the two theories agree very

closely, as would be expected, with the exception of the

spike at 16° produced by the longitudinal wave component.

This phenomenon occurs at such a narrow angular range that
the experimental data do not follow the sharp rise. Still
it 1is 1interesting to note that the data do reflect the
existence of some anomaly occurring at this point. Since
the exi{istence of the 1longitudinal wave is almost

universally 1ignored, the appearance of it at this 1low
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frequency would be an important result. A system with a
more narrow angular resolution could well demonstrate the
full effect of this phenomenon.

The presence of the peak in question becomes quite
clear at Q = 1.5 as is shown in Figure 37 for aluminum and
at Q = 2.5 as is shown in Figure 38. As the frequency
increases, the peak broadens and the data is more able to
accurately reflect the amplitude as is shown in Figure 39
for = 4,73, Here, the limited dynamic range of the
experimental system becomes more noticeable. The back-
ground light level appears on the figure as an upper cutoff
at about 15 dB. This level is dependent on the power level
which the transducer 1is capable of delivering into the
water, as well as the alignment of the schlieren apparatus;
the best dynamic range ever achieved was 20 dB. Figure 40
for steel at Q = 5.28 shows the problem even more clearly.
This truncation effect will appear in most of the remaining
data curves which will be presented herein. It should also
be noted that the addition of the longitudinal wave term,
even though it accurately predicts the shape of the peak at
l6°, is beginning to have a detrimental effect on the
theoretical predictions near the grazing angle. This will
also become more noticeable as the frequency parameter is
increased.

At 0 = 6, a third peak produced by the Al Lamb mode
appears at normal incidence and slowly moves outward as the

frequency parameter is increased. Simultaneously, the
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lécacion of the "longitudinal" peak, actually the So Lamb
wave, which up until now has remained consistently at 16°,
begins moving farther out in the direction of the grazing
angle. This 1is shown in Figure 41 for Q = 7.71. The
augmented Mindlin theory is, however, still able to track
the main 1lobe, which 1is produced by the Ao Lamb mode,
remarkably well. This mode, as the previous sequence of
figures has shown, first appears at the grazing angle at a
frequency slightly above coincidence and moves in the
direction towards the plate normal, i.e., 1in the opposite
direction of all the other peaks. Figure 41 represents the
first accurate comparison between experimental data and
theory which includes all three of these Lamb modes.
Previously, only the locations, not the shapes of the
peaks, have been correctly reproduced.

As the frequency 1s increased further, the deviation
between the theory and experimental data becomes more
pronounced. This is as expected. An interesting point is
that the breakdown in the theoretical description of the
longitudinal wave did not occur at a much lower frequency.
At Q = 14,94 (Figure 42), this becomes quite apparent. A
fourth mode, 52, has now appeared at normal incidence and
the Ay and S0 modes have coalesced {into a broad peak at
332‘ Theoretically, 30° 1s the predicted lower limit for
the AO mode. Also, note that the longitudinal wave model
is still predicting the same angle of 16°, which is obvi-

ously incorrect at this frequency.




112

L S et WA LIS (R 1 ) AR 637

*23e1d @yl jo ALduanbaay sdouepioujod
TBOISSBID a3yl sawyl [/°¢ ST YOIYm °‘zZHQW Z€E1°Z 30 Adouoanbaay
e 3Je o3jeyd wnujunje YO1Yy3 *UT Zg0°0 ® 103 @dulapioug
Jo @18ue 3o uojjduny e se 8S0T UOJSSTUSURI] *1% FYN914

(Beopy eduep |DUT 40 3 [Buy
09

uoJ)

C9P) 807 uo|SS|

os (1] ‘oL os or ot o2z ol Q,
" } “ — ! + ﬂ?d } A
<+ Ars
H @
4+ i 5
_ #HEHH”
y [Dononnnnonnnnonnonnnnonnooon
it . ia
\
: N
(4
4. . [
, L
pjog |Pjusw | Jodx] @
®310|d |O2ISSO|] — . —
9381d UFIPUTW paIududny — .
M N 3 N L s " (7 3
r 14 * v Y r \z o




113

*93e7d @yl 3o Aduanbaij ®duapyoujod
{eoIsseID ©Y]l SIWTI H6°H] ST YOTUm ‘zZHN 689 Jo ALdouanbaay
¢ e @93eld wnuruwnie }OFY3 *uyY GEI°0 ® 303 @adudprour
Jo 278ue Jo uollIdouny B SEB SSO] UOTSSTUSUBRI] *Zy AANOIA

(Bep) eduap|duT 4o °|Buy
0g S oy

06 o oe oe at

Lo
T
)
~

3 L N
T Y

Djog |DjuUew| Jedx] @
2I0(d |OD|SSO|] — . —

9381d UIIPUIW pa3Iusudny

+
L 3
+

nNNAONNN

o1

02 ) '
CEP) $SOT Uo |88 |WSUDJ)

ot

L

r
v —  m




114

As the frequency 1is further 1increased through the
range between @ = 15 and 35 as is shown in Figures 43 and
49, the amplitude of the lobe at 30° gradually reduces and
eventually vanishes at Q = 35. This phenomenon has appar-
ently not received previous attention in the literature.
None of the theoretical treatments to date predict such an
occurrence; yet, on inspection it appears to be real. The
peak in.question is composed of both the AO and S0 modes,
which are, respectively, the lowest antisymmetrical and the
lowest symmetrical modes of the plate. When they both
reach 30°, the phase velocities become nearly equal; thus,
the wavelengths approach the same value and phase. Conse~-
quently, when the 1incident sound beam drives the back of
the plate, the symmetrical motion on the front of the plate
will be exactly matched and out of phase with the antisym-
metrical motion produced by the Ao mode. As this cancella-
tion becomes exact, the amplitude of the transmitted wave
is reduced until it eventually reaches zero. This 1is shown
schematically in Figure 50. If the hypothesis is correct,
the same reasoning should apply to each An-Sn pair, and
this appears to be the case. The same effect can be seen
clearly for the Al-sl pair as well as the AZ-S2 pair, but
as the frequency 1s increased further into the Q = 100
range, the proliferation of new modes is such that it 1s no
longer possible to identify modes with absolute certainty.
An improvement in the angular resolution of the system

would be necessary. Figures 51 to 56 show the gradual

L i . ) . ikad . o e o ) N 2 Y T
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FIGURE 50. Cancellation of modal pairs.
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movement of the peaks as the frequency is further
increased. The disappearance of each pailr of peaks after
they have settled at their upper 1limit does appear to be
true for the lower peaks. Each An-sn pair has a slightly
lower limit than the previous pair; thus, as these peaks
vanish, the transmission is tightly confined to the region
near the normal of the plate. This same observation should
also apply to the radiation pattern of a vibrating plate;
i.e., as the frequency is 1increased above the coincidence
frequency of the plate, the radiation should be concen-
trated more and more into the angular region near the plate

normal.

5.4 Dispersion Curves

Although the shape of the peaks in the transmission
curves has proven to be very difficult to predict, the
angular locations of the ©peaks have been well known for
many years. In order to <compare the results presented in
the last section with the theoretical results derived by
Rayleigh [1] and Lamb [3], the 1locations of each of the
peaks for aluminum have been summarized in Figure 57. The
theoretical curves have been replotted from Viktorov [49]
and apply for a Poisson’s ratio of 0.34, which provides a
fairly accurate representation for aluminum. The coalesc~-
ing and subsequent disappearaance of the An-Sn pairs {is

clear in the experimental data, but, as noted previously,

the theoretical curves do not reflect this phenomenon. The
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Mindlin plate theory has been verified by many different
experiments and the sound transmission for specific Lamd
modes has been verified by many others, but always for much
more limited frequency ranges than the current investiga-
tion. The schlieren method makes it possible to study the
transmission of sound through plates, and thus to study the
effects of the Lamb modes in a very wide frequency range
because of the advanced equipment and the basic unintru-
siveness of the method.

Figure 57 shows the overall studv of Lamb waves for
aluminum plates submerged in water. The frequencies are
normalized to the classical coincidence frequency of the
plate and cover the range from 1 to 100. The figure
represents a summary of approximately 7000 schlieren
recordings of incident and transmitted sound waves. The
theoretical curves 1included were obtained by numerical
solution of the Rayleigh-Lamb relation derived in Section
2.3.1.

Many of the individual sound transmission curves from
which Figure 57 was obtained are shown in Figures 35 - 56
plotted as functions of the incident angle. Experimental
evidence for the existence of the ©peak caused by the
longitudinal term not included 1in the original Mindlin
theory is quite apparent in many of these curves, and the
agreement with the theory presented in Section 2.3.3 1is

quite good for frequencies wup to nearly 10 times the

coincidence frequency.




CHAPTER 6

SUMMARY AND CONCLUSIONS

The video method of quantizing schlieren data was
shown to be a viable and accurate laboratory technique. By
using a periodically-interrupted, laser beam stroboscopic
illumination could be used to determine the characteristics
of complex acoustic fields, e.g., accurately measuring the
Lamb wave lengths associated with plate vibrations and the
surface wave lengths in the investigation of curved and
ribbed structures. Although previous investigators could
obtain data which had no better than a 75 percent accuracy,
the data presented herein <consistently reflects a probable
error of 1/2 dB, i.e., 6 percent, in amplitude and 1l/4
degree in angular resolution. (Figure 53 shows the typical
repeatability between experimental runs taken several
months apart.) This level of accuracy, together with the
speed and convenience of the video method over alternate
means of quantizing schlieren data, should offer great

encouragement for its future use. The schlieren technique
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has long been recognized as a valuable laboratory tool.
The added ability to produce extremely accurate quantita-

tive data will greatly enhance this value.

6.2 Results

By making use of stroboscopic illumination to investi-
gate progressive waves and constant illumination to inves-
tigate standing wave fields, an exact analysis of complex
wave fields could be performed that was heretofore impossi-
ble. The various field components such as radiation due to
progressive Lamb waves, due to Rayleigh surface waves, or
due to forced excitation of steady-state vibrations could
be uniquely analyzed with very high accuracy. It was thus
possible, for instance, to examine accurately the vibration
of complex structures such as joints, ribbed joints, and
curved bodies.

Much work was also done 1in the investigation of the
transmission and reflection of bounded acoustic beams. The
acoustic transfer function derived by Stuart [40] and the
corresponding transmission coefficient presented in Section
2.3.2 have been confirmed for frequencies up to approxi-
mately 15 times the classical coincidence frequency of the
plate. Furthermore, the additional 1longitudinal term
included in Section 2.3.3 has been confirmed for frequen-
cies up to approximately 8 times the coincidence frequency.
These results show that current theoretical treatments are

now able to predict accurately the shape of the 1lobes in
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the transmission and radiation curves produced by the
lowest three Lamb modes. Previously, only the angular
locations of these peaks were known from the dispersion
relations obtained by Rayleigh [1] and Lamb [3]. This
research has also produced data which extends the confirmed
range of validity of those dispersion curves to frequencies
greater than 100 times the coincidence frequency. The
dispersion curves predict that the angular locations of the
two lobes produced by each An-Sn pair of Lamb modes will
approach the same asymptotic value at high frequencies.
This was found to be correct, as previous research has also
shown, but more significantly, it was discovered that as
each pair of 1lobes coalesce, they also cancel and the
transmission at that location goes to zero as the frequency

increased further.

6.3 Future Work

The most obvious point which needs to be improved is
the thin-plate model used to derive the 1longfitudinal wave
term in Section 2.3.3. At frequencies above coincidence,
the plate cannot be accurately regarded as "thin" (i.e.,
with respect to a wavelength) and it is surprising that the
results are as accurate as they appear to be. A model
based on a "thick” plate should greatly extend the range of
validity.

The schlieren systen, as it was configured, can be

improved in many ways. The errors in each resulting data
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set are not random; the experimental data drifts back and
forth across the theoretical curves. However, as viewed
over many data sets, the errors do appear to be more
random. This implies that short term systematic errors are
occurring in the experimental system. The wmost obvious
source is the drift in the output level of the transducer,
which is caused by the slow drifting of the frequency and
output level of the oscillator. Another obvious point
which needs to be corrected is the stability of the optical
bench; the ©bench was moved from the first floor to the
fourth floor of the Applied Science Building for wuse by
this project. Not only is an upper floor more susceptible
to structural vibrations, but the granite table it was
originally situated on had to be left behind due to its
weight. The quantitative data scan across the video image
is confined to a single vertical slice. This greatly
limits the types of experimental geometries which «can be
reasonably 1investigated. There are several commercial
video image digitizers available that are far more flexi-
ble. One obvious additional convience would be the
procurement of a small microcomputer 1in order to process
the large volume of digital data which can bde produced with
the current system. The main benefits of such a system
would be the ability to base transmission and reflection
coefficients on the integral over the beam width rather
than on just a comparison of on-axis intensities. Unfortu-

nately, most of the power inherent in that approach would
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be 1lost with the current image digitizer since it 1is
frequently impossible to align the experiment in such a way

that the acoustic beam is perpendicular to the data

sampling line.
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